MAY 2012

P/ID 17401/RBA

Time : Three hours Maximum: 75 marks PART A — $(5 \times 5 = 25 \text{ marks})$ Answer ALL questions. All questions carry equal marks. 1. Show that for any two sets A and B (a) (i) $A - (A \cap B) = A - B.$ (3)(ii) Give an example of a relation which is neither reflexive nor irreflexive. (2)Or (b) Let A be given finite set and $\rho(A)$ is a power set. Let \subseteq be the inclusion relation on the elements of $\rho(A)$. Draw Hasse diagram of $\langle \rho(A); \subseteq \rangle$ for (i) $A = \{a, b\}$ (ii) $A = \{a, b, c\}$. 2. (a) Show that $((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q)$ $\vee (\Box P \land \Box R)$ is a tautology. Or

www.downloadmela.com - World's number one free educational download portal

- (b) Negate the following statements in different forms.
 - (i) Ottawa is a small town.
 - (ii) Every city in Canada is clean.
- 3. (a) (i) Define semigroup homomorphism. (2)
 - (ii) Define Monoid with suitable example. (3)

Or

- (b) Find a *cfg G* which generates the language L which consists of all words of the form $a^r b^s c^t, r, s, t > 0$ i.e *a*'s followed by *b*'s followed by *c*'s.
- 4. (a) Define :
 - (i) isomorphic graphs
 - (ii) simple path
 - (iii) reachable.

Or

(b) Write the algorithm for preorder.

2 P/ID 17401/RBA

5. (a) Let the grammar G be defined by

 $S \rightarrow AB$ $A \rightarrow Aa \mid bB$ $B \rightarrow a \mid Sb$ Draw derivation trees for (i) baabaab (ii) bBABb.

 \mathbf{Or}

(b) How do you diagnose the faults in combinatorial circuits?

PART B — $(5 \times 10 = 50 \text{ marks})$

Answer any FIVE questions.

All questions carry equal marks.

6. (a) Obtain distinctive normal forms of $\neg (P \lor Q)$

 $\rightleftharpoons (P \land Q).$

- (b) Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \to R, P \to M$, and $\square M$.
- 7. (a) Show that the formula $Q \lor (P \land \neg Q) \lor (\neg P \lor \neg Q)$ is a tautology. (5)
 - (b) Obtain the principle conjunctive normal form of

the formula S given by $(\neg P \rightarrow R) \land (Q \rightleftharpoons P)$. (5)

3 **P/ID 17401/RBA**

8. (a) Prove that
$$(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$$
.

(5)

- (b) Let $X = \langle 1, 2, ..., 7 \rangle$ and $R = \{ \langle x, y \rangle | x y$ is divisible of by 3 \}. Show that R is an equivalence relation. Draw the graph of R. (5)
- 9. (a) Write short notes on any five partial order relations which are frequency used. (5)
 - (b) Write an algorithm to check whether the given number is perfect or not using recursion.(5)
- 10. (a) Prove that for any commutative monoid $\langle M, * \rangle$, the set of idempotent elements of M form a submonoid. (5)
 - (b) Write an algorithm to convert the given infix expression into postfix from. (5)
- 11. (a) Prove that the kernel of every group homomorphism is a normal subgroup. (6)
 - (b) In a simple diagraph, $G = \langle V, E \rangle$, prove that every node of the diagraph lies in exactly one strong component. (4)
- 12. Discuss WARSHALL and MINIMA algorithms with respect to adjacency matrix.
- 13. Explain the algorithm for generating a fault matrix with an example.
 - 4 **P/ID 17401/RBA**