MAY 2013

P/ID 6011/MBL

Time : Three hours

Maximum : 80 marks

PART A — $(8 \times 5 = 40 \text{ marks})$

Answer any EIGHT questions.

- 1. Describe the uses of operation research in business.
- 2. State the characteristics of a good model.
- 3. State the concept of degeneracy in simplex method.
- 4. Describe the advantages of assignment problem.
- 5. State the assumptions for sequencing models.
- 6. Describe the reasons for carrying inventory.
- 7. What are the cost involved in a queuing system?
- 8. Describe the assumptions in the rule of the game.
- 9. What do you understand by pure strategies and mixed strategies?

10. Solve graphically and find the minimum value of

 $z = -x_1 + 2x_2$

Subject to

$$\begin{split} -x_1 + 3x_2 &\leq 10 \\ x_1 + x_2 &\leq 6 \\ x_1 - x_2 &\leq 2 \\ x_1 \,, \, x_2 &\geq 0 \,. \end{split}$$

11. Solve the following 2-person zero-sum game

Player B

$$8 -3 7$$

Player A
 $6 -4 5$
 $-2 2 -3$

- 12. The annual requirements for a particular raw material are 2000 units costing Re. 1 each to the manufacturer. The ordering cost is Rs. 10 per order and the carrying cost 16% per annum of the average inventory. Find economic order quantity.
 - 2 **P/ID 6011/MBL**

PART B — $(4 \times 10 = 40 \text{ marks})$

Answer any FOUR questions.

13. Use the simplex method to solve the following LPP.

Maximize $z = 3x_1 + 5x_1 + 4x_3$ Subject to $2x_1 + 3x_2 \le 8$ $2x_2 + 5x_3 \le 10$ $3x_1 + 2x_2 + 4x_3 \le 15$

- $x_1, x_2, x_3 \ge 0.$
- 14. Find optimal assignment schedule and total cost for the following data :

Workers	Jobs (costs in Rs.)					
	W	Х	Y	Ζ		
А	1000	1200	400	900		
В	600	500	300	800		
С	200	300	400	500		
D	600	700	300	1000		

3 **P/ID 6011/MBL**

Jobs					
Time on machine	\mathbf{J}_1	J_2	\mathbf{J}_3	\mathbf{J}_4	J_5
\mathbf{M}_1	7	12	11	9	8
M_2	8	9	5	6	7
M_3	11	13	9	10	14

15. Provide the optimal job sequence involving three machines M_1 , M_2 and M_3 for the following.

16. In a replacement problem, the cost of machine is Rs. 6100/- and its scrap value is only Rs. 100. The maintenance costs are as follows :

Years: 1 2 3 4 5 6 7 8

 $Costs: \ 100 \ \ 250 \ \ 400 \ \ 600 \ \ 900 \ \ 1250 \ \ 1600 \ \ 2000$

When should the machine be replaced?

17. Solve the following game by using rule of dominance of game theory

 $\begin{pmatrix}
2 & -2 & 4 & 1 \\
6 & 1 & 12 & 3 \\
-3 & 2 & 0 & 6 \\
2 & -3 & 7 & 1
\end{pmatrix}$

- 18. What were the post-world war II factors so important that these lead to development of operation research?
 - 4 **P/ID 6011/MBL**