(6 pages)

OCTOBER 2011

P/ID 37451/PMAA

Time : Three hours Maximum : 100 marks

SECTION A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions.

Each question carries 2 marks.

- 1. Show that a group of order 25 is abelian.
- 2. Prove that S_3 is solvable.
- 3. Find the invariants of the matrix.
 - $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

of a linear transformation T in A(v).

- 4. Find the companion matrix of the polynomial $(x+1)^2$.
- 5. If T is unitary and if λ is a characteristic root of T, then show that $|\lambda| = 1$.

- 6. Write down a basis of $Q(\sqrt{2})$ over Q.
- 7. Whether C is a simple extension of **R**? Justify.
- Find the group of automorphisms of C relative to
 R.
- 9. Write down the primitive roots of 17.
- 10. Write down the cyclotomic polynomial $\phi_4(x)$.

SECTION B — $(5 \times 6 = 30 \text{ marks})$

Answer ALL questions.

Each questions carries 6 marks.

11. (a) If 0(G)=pⁿ, where p is a prime number, then prove that G has a non trivial centre.

Or

(b) Prove that S_4 is solvable.

2 P/ID 37451/PMAA

12. (a) If V is an n-dimensional vector space over F and if $T \in A(V)$ has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.

Or

- (b) Prove that the invariants of a nilpotent linear transformation T are unique.
- 13. (a) Prove that $T \ge 0$ if and only if $T=AA^*$ for some A.

Or

- (b) If a,b∈K are algebraic over F of dimensions m and n, respectively, and if m and n are relatively prime, prove that F(a,b) is of degree mn over F.
- 14. (a) Show that the polynomial $f(x) \in F[x]$ has a multiple root if and only if f(x) and $f^{1}(x)$ have a non trivial common factor.

Or

(b) Prove that C is a normal extension of R.
3 P/ID 37451/PMAA

15. (a) If F is a finite field and $\alpha \neq 0, \beta \neq 0$ are two elements of F, then prove that we can find elements a and b in F such that $1 + \alpha a^2 + \beta b^2 = 0$.

Or

(b) If a∈ H, the Hurwitz ring of integral quaternions, then show that a⁻¹ ∈ H if and only if N (a) =1.

SECTION C — $(5 \times 10 = 50 \text{ marks})$

Answer ALL questions.

Each questions carries 10 marks.

16. (a) State and prove Cauchy's theorem.

Or

(b) Show that any finitely generated module over a Euclidean ring is the direct sum of a finite number of cyclic submodules.

> 4 **P/ID 37451/PMAA** [P.T.O.]

17. (a) If $T \in A(V)$ has all its characteristic roots in F, then show that there is a basis of V in which the matrix of T is triangular.

\mathbf{Or}

- (b) Find all possible Jordan forms for all 8×8 matrices having $x^2(x-1)^3$ as minimal polynomial.
- 18. (a) Show that two real symmetric matrices are congruent if and only if they have the same rank and signature.

Or

- (b) Show that $a \in K$ is algebraic over F if and only if F(a) is a finite extension of F.
- 19. (a) Show that any two splitting fields of the same polynomial over a given field F are isomorphic by an isomorphism leaving every element of F fixed.

Or

(b) Determine the degree of the splitting field of the polynomial $x^6 + x^3 + 1$ over the field of rational numbers F.

5 P/ID 37451/PMAA

20. (a) Show that a finite division ring is necessarily a communicative field.

Or

(b) Show that every positive integer can be expressed as the sum of squares of four integers.

6 P/ID 37451/PMAA